2690 independent reflections 2015 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.023$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Acetyl-5-(4-fluorophenyl)-3-(4-methylphenyl)-2-pyrazoline

Huan-Mei Guo

Department of Chemistry, Weifang University, Weifang 261061, People's Republic of China

Correspondence e-mail: huanmeiguo@163.com

Received 2 June 2007; accepted 6 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.040; wR factor = 0.105; data-to-parameter ratio = 13.3.

In the title compound, C₁₈H₁₇FN₂O, all bond lengths and angles show normal values. The mean plane of pyrazoline ring makes dihedral angles of 83.33(9) and $17.03(9)^{\circ}$ with the benzene rings; the two benzene rings make a dihedral angle of 76.01 (5)°. The H atoms of both methyl groups are disordered over two positions by rotation about their C–C σ bonds, with occupancies of 0.52 (3) and 0.48 (3) for the methyl of the tolyl group, and 0.62 (2) and 0.38 (2) for the methyl belonging to the acetyl group. Weak intermolecular $C-H\cdots F$ hydrogen bonds connect molecules into centrosymmetric dimers in the crystal structure.

Related literature

For related pyrazoline derivatives, see: Fahrni et al. (2003); Guo et al. (2007); Jian et al. (2006); Kimura et al. (1977); Manna et al. (2002); For biological properties, see: Rawal et al. (1963); Dhal et al. (1975); Lombardino & Otterness (1981).

Experimental

Crystal data

-	
$C_{18}H_{17}FN_2O$	V = 1527.6 (5) Å ³
$M_r = 296.34$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.521 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 11.405 (2) Å	T = 298 (2) K
c = 9.719 (2) Å	$0.48 \times 0.25 \times 0.10 \text{ mm}$
$\beta = 108.368 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: none
6307 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	203 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.12 \text{ e } \text{\AA}^{-3}$
2690 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ D-H $H \cdots A$ $D \cdots A$ $C14\!-\!H14E\!\cdot\cdot\cdot\!F1^i$ 0.96 2.37 3.314 (2) 166 Symmetry code: (i) -x, -y + 1, -z + 2.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2115).

References

- Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Dhal, P. N., Achary, T. E. & Nayak, A. (1975). J. Indian Chem. Soc. 52, 1196-1199
- Fahrni, C. J., Yang, L. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799-3812
- Guo, H.-M., Jian, F.-F., Zhao, P.-S., Sun, X.-Z. & Lin, C.-H. (2007). Acta Cryst. E63, o2618-o2619.
- Jian, F.-F., Wang, J. & Xiao, H.-L. (2006). Acta Cryst. E62, 04771-04772.
- Kimura, T., Kai, Y., Yasuoka, N. & Kasai, N. (1977). Acta Cryst. B33, 1786-1792
- Lombardino, J. G. & Otterness, I. G. (1981). J. Med. Chem. 24, 830-834.
- Manna, F., Chimenti, F., Bolasco, A., Secci, D., Bizzarri, B., Befani, O., Turini, P., Mondovi, B., Alcaro, S. & Tafi, A. (2002). Bioorg. Med. Chem. Lett. 12, 3629-3633.
- Rawal, A. A., Thakor, V. M. & Shah, N. M. (1963). J. Indian Chem. Soc. 40, 323-326
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3779 [doi:10.1107/S1600536807038810]

1-Acetyl-5-(4-fluorophenyl)-3-(4-methylphenyl)-2-pyrazoline

H.-M. Guo

Comment

Pyrazoline and its derivatives are important and useful five-membered heterocyclic compounds, which possess antiviral (Rawal *et al.*, 1963), antifungal (Dhal *et al.*, 1975), and immunosuppressive (Lombardino & Otterness, 1981) activities. 1-Acetyl-3,5-diaryl-2-pyrazoline have also been found to inhibit the monoamine oxidases (Manna *et al.*, 2002). As part of our ongoing investigations on pyrazolines and their metal complexes, we report here the crystal structure of the title compound, (I).

In the structure of (I) (Fig. 1), all bond lengths and angles fall in the normal ranges (Fahrni *et al.*, 2003; Kimura *et al.*, 1977; Guo *et al.*, 2007; Jian *et al.*, 2006). The dihedral angles formed by pyrazolinyl ring with aromatic groups at positions 3 and 5 are 17.03 (1) and 83.33 (2)°, respectively. A weak C—H…F hydrogen bond stabilizes the crystal structure of (I), forming centrosymmetric dimers in the cell.

Experimental

1-(*p*-Methylphenyl)-3-(*p*-fluorophenyl)-2-propenyl-1-ketone (0.02 mol) and hydrazine (0.02 mol) were mixed in 99.5% acetic acid (40 ml) and refluxed for 6 h. Then, the mixture was poured into ice–water to afford colourless solids. The solids were filtrated and washed with water, until the pH of the solution reached 7.0. Finally, the solid product was dried at room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from EtOH at room temperature.

Refinement

In the case of methyl groups, a difference map revealed that H atoms are disordered over two positions, by rotation about the C—C bonds. In the last refinement cycles, corresponding H positions were regularized, with C—H bond lengths set to 0.96 Å. Site occupation factors of H atoms were refined to 0.52 (3)/0.48 (3) for the methyl of the tolyl group and 0.62 (2)/0.38 (2) for the methyl belonging to the acetyl group. Other H atoms were placed geometrically and allowed to ride on their parent atoms, with C—H distances set to 0.93 (aromatic CH), 0.97 (methylene CH₂) and 0.98 Å (methine CH). In all cases, isotropic displacement parameters for H atoms were set to $U_{iso}(H) = xU_{eq}(carrier C atom)$, with x = 1.5 for methyl groups and x = 1.2 otherwise.

Figures

Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.

1-Acetyl-5-(4-fluorophenyl)-3-(4-methylphenyl)-2-pyrazoline

Crystal data	
C ₁₈ H ₁₇ FN ₂ O	$F_{000} = 624$
$M_r = 296.34$	$D_{\rm x} = 1.288 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2013 reflections
a = 14.521 (3) Å	$\theta = 2.3 - 24.1^{\circ}$
<i>b</i> = 11.405 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 9.719 (2) Å	T = 298 (2) K
$\beta = 108.368 \ (3)^{\circ}$	Prism, colourless
$V = 1527.6 (5) \text{ Å}^3$	$0.48 \times 0.25 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	2015 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.023$
Monochromator: graphite	$\theta_{\text{max}} = 25.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.3^{\circ}$
φ and ω scans	$h = -12 \rightarrow 17$
Absorption correction: none	$k = -13 \rightarrow 13$
6307 measured reflections	$l = -10 \rightarrow 11$
2690 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.105$	$w = 1/[\sigma^2(F_0^2) + (0.0477P)^2 + 0.1686P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{max} = 0.001$

2690 reflections

$\Delta \rho_{max} = 0.12 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$

203 parameters

Primary atom site location: structure-invariant direct Extinction correction: none

	x	у	z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
C1	0.37035 (11)	0.47632 (13)	1.46974 (16)	0.0490 (4)	
H1	0.4222	0.4248	1.5039	0.059*	
C2	0.32733 (13)	0.52340 (14)	1.56553 (17)	0.0558 (4)	
H2	0.3493	0.5039	1.6634	0.067*	
C3	0.25217 (14)	0.59881 (15)	1.51273 (19)	0.0586 (4)	
C4	0.21734 (13)	0.63002 (16)	1.36947 (19)	0.0643 (5)	
H4	0.1657	0.6820	1.3365	0.077*	
C5	0.26131 (12)	0.58203 (15)	1.27545 (18)	0.0575 (4)	
Н5	0.2391	0.6023	1.1778	0.069*	
C6	0.33761 (11)	0.50461 (13)	1.32401 (15)	0.0461 (4)	
C7	0.38072 (11)	0.44494 (14)	1.21964 (15)	0.0496 (4)	
H7	0.4468	0.4182	1.2709	0.059*	
C8	0.31881 (12)	0.34222 (14)	1.13874 (16)	0.0522 (4)	
H8A	0.3588	0.2750	1.1347	0.063*	
H8B	0.2709	0.3192	1.1840	0.063*	
C9	0.27163 (11)	0.39268 (13)	0.99076 (16)	0.0463 (4)	
C10	0.19172 (11)	0.33801 (13)	0.87748 (16)	0.0471 (4)	
C11	0.16780 (12)	0.22164 (15)	0.89026 (19)	0.0569 (4)	
H11	0.2009	0.1794	0.9729	0.068*	
C12	0.09508 (13)	0.16799 (15)	0.7811 (2)	0.0624 (5)	
H12	0.0806	0.0897	0.7915	0.075*	
C13	0.04356 (12)	0.22696 (16)	0.65762 (19)	0.0592 (5)	
C14	-0.03119 (15)	0.16550 (18)	0.5358 (2)	0.0848 (6)	
H14A	-0.0819	0.1358	0.5701	0.127*	0.52 (3)
H14B	-0.0013	0.1016	0.5016	0.127*	0.52 (3)
H14C	-0.0582	0.2198	0.4581	0.127*	0.52 (3)
H14D	-0.0060	0.1538	0.4566	0.127*	0.48 (3)
H14E	-0.0889	0.2125	0.5040	0.127*	0.48 (3)
H14F	-0.0464	0.0909	0.5691	0.127*	0.48 (3)
C15	0.06540 (13)	0.34419 (16)	0.64840 (18)	0.0622 (5)	
H15	0.0299	0.3871	0.5677	0.075*	
C16	0.13788 (12)	0.39907 (15)	0.75489 (17)	0.0561 (4)	
H16	0.1511	0.4778	0.7449	0.067*	
C17	0.44121 (12)	0.61308 (14)	1.10642 (18)	0.0518 (4)	
C18	0.43325 (13)	0.67838 (15)	0.96995 (19)	0.0650 (5)	
H18A	0.4675	0.6365	0.9155	0.098*	0.62 (2)
H18B	0.4609	0.7551	0.9935	0.098*	0.62 (2)
H18C	0.3662	0.6855	0.9131	0.098*	0.62 (2)
H18D	0.4966	0.7028	0.9706	0.098*	0.38 (2)
H18E	0.3927	0.7460	0.9635	0.098*	0.38 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supplementary materials

H18F	0.4053	0.6282		0.8881		0.098	*	0.38 (2)
F1	0.20957 (9)	0.64612 (10))	1.60668	(12)	0.088	2 (4)	
N1	0.38063 (10)	0.52101 (11)	1.09674	(13)	0.051	2 (3)	
N2	0.30906 (9)	0.49040 (12	2)	0.96894	(13)	0.050	2 (3)	
01	0.50015 (9)	0.63776 (11)	1.22326	(13)	0.071	3 (4)	
Atomic displace	ment parameters ($(Å^2)$						
	U^{11}	U ²²	U ³³		U^{12}		U^{13}	U^{23}
C1	0.0485 (9)	0.0517 (9)	0.0431 (9))	0.0004 (7)		0.0090 (7)	0.0043 (7)
C2	0.0667 (11)	0.0571 (10)	0.0416 (9))	-0.0045 (9)		0.0145 (8)	0.0023 (8)
C3	0.0710 (12)	0.0565 (10)	0.0538 (1	10)	0.0029 (9)		0.0274 (9)	-0.0033 (8)
C4	0.0642 (11)	0.0663 (11)	0.0613 (1	11)	0.0185 (9)		0.0183 (9)	0.0058 (9)
C5	0.0570 (10)	0.0689 (11)	0.0430 (9))	0.0092 (9)		0.0104 (8)	0.0071 (8)
C6	0.0433 (8)	0.0507 (9)	0.0406 (8	3)	-0.0009 (7)		0.0080 (7)	0.0030 (7)
C7	0.0454 (9)	0.0598 (10)	0.0407 (9))	0.0043 (8)		0.0095 (7)	0.0087 (7)
C8	0.0573 (10)	0.0528 (9)	0.0480 (9))	0.0041 (8)		0.0186 (8)	0.0047 (7)
C9	0.0483 (9)	0.0502 (9)	0.0432 (9))	0.0041 (7)		0.0185 (7)	0.0014 (7)
C10	0.0474 (9)	0.0511 (9)	0.0464 (9))	0.0032 (7)		0.0197 (7)	-0.0005 (7)
C11	0.0540 (10)	0.0548 (10)	0.0621 (1	11)	0.0051 (8)		0.0187 (9)	0.0057 (8)
C12	0.0562 (10)	0.0511 (10)	0.0810 (1	13)	-0.0020 (9)		0.0234 (10)	-0.0063 (9)
C13	0.0483 (10)	0.0639 (11)	0.0646 (1	11)	0.0041 (9)		0.0168 (9)	-0.0152 (9)
C14	0.0695 (13)	0.0827 (14)	0.0901 (1	15)	-0.0002 (11)	0.0077 (11)	-0.0286 (11)
C15	0.0625 (11)	0.0651 (11)	0.0519 (1	10)	0.0084 (9)		0.0079 (9)	-0.0009 (8)
C16	0.0630 (11)	0.0519 (9)	0.0503 (1	10)	0.0017 (8)		0.0134 (9)	-0.0004 (8)
C17	0.0482 (9)	0.0555 (10)	0.0525 (1	10)	0.0011 (8)		0.0170 (8)	-0.0013 (8)
C18	0.0724 (12)	0.0603 (11)	0.0666 (1	11)	-0.0068 (9)		0.0280 (10)	0.0060 (9)
F1	0.1181 (10)	0.0863 (8)	0.0758 (7	7)	0.0254 (7)		0.0528 (7)	-0.0003 (6)
N1	0.0514 (8)	0.0606 (8)	0.0396 (7	7)	-0.0064 (7)		0.0115 (6)	0.0041 (6)
N2	0.0498 (8)	0.0596 (8)	0.0400 (7	7)	-0.0037 (7)		0.0125 (6)	0.0015 (6)
O1	0.0626 (8)	0.0786 (9)	0.0624 (8	3)	-0.0137 (7)		0.0051 (7)	-0.0010 (6)

Geometric parameters (Å, °)

1.383 (2)	C10-C16	1.389 (2)
1.383 (2)	C11—C12	1.382 (2)
0.9300	C11—H11	0.9300
1.357 (2)	C12—C13	1.373 (2)
0.9300	С12—Н12	0.9300
1.3651 (19)	C13—C15	1.383 (2)
1.370 (2)	C13—C14	1.504 (2)
1.382 (2)	C15—C16	1.373 (2)
0.9300	С15—Н15	0.9300
1.379 (2)	С16—Н16	0.9300
0.9300	C17—O1	1.2201 (19)
1.511 (2)	C17—N1	1.354 (2)
1.4760 (19)	C17—C18	1.494 (2)
1.534 (2)	N1—N2	1.3897 (17)
0.9800	C14—H14A	0.9600
	1.383 (2) 1.383 (2) 0.9300 1.357 (2) 0.9300 1.3651 (19) 1.370 (2) 1.382 (2) 0.9300 1.379 (2) 0.9300 1.511 (2) 1.4760 (19) 1.534 (2) 0.9800	1.383(2) $C10-C16$ $1.383(2)$ $C11-C12$ 0.9300 $C11-H11$ $1.357(2)$ $C12-C13$ 0.9300 $C12-H12$ $1.3651(19)$ $C13-C15$ $1.370(2)$ $C13-C14$ $1.382(2)$ $C15-C16$ 0.9300 $C15-H15$ $1.379(2)$ $C16-H16$ 0.9300 $C17-O1$ $1.511(2)$ $C17-C18$ $1.534(2)$ $N1-N2$ 0.9800 $C14-H14A$

С8—С9	1.499 (2)	C14—H14B	0.9600
C8—H8A	0.9700	C14—H14C	0.9600
C8—H8B	0.9700	C18—H18A	0.9600
C9—N2	1.2865 (19)	C18—H18B	0.9600
C9—C10	1.464 (2)	C18—H18C	0.9600
C10—C11	1.387 (2)		
C2—C1—C6	121.11 (15)	C10—C9—C8	124.91 (14)
С2—С1—Н1	119.4	C11—C10—C16	117.86 (15)
С6—С1—Н1	119.4	C11—C10—C9	120.11 (14)
C3—C2—C1	118.15 (15)	C16—C10—C9	122.02 (14)
С3—С2—Н2	120.9	C12—C11—C10	120.47 (16)
C1—C2—H2	120.9	C12—C11—H11	119.8
C2—C3—F1	118.53 (15)	C10—C11—H11	119.8
C2—C3—C4	122.97 (16)	C13—C12—C11	121.89 (17)
F1—C3—C4	118.50 (16)	C13—C12—H12	119.1
C3—C4—C5	118.00 (16)	C11—C12—H12	119.1
С3—С4—Н4	121.0	C12—C13—C15	117.20 (16)
С5—С4—Н4	121.0	C12—C13—C14	121.25 (17)
C6—C5—C4	121.08 (15)	C15—C13—C14	121.53 (17)
С6—С5—Н5	119.5	C16—C15—C13	121.92 (16)
C4—C5—H5	119.5	C16—C15—H15	119.0
C5-C6-C1	118 68 (15)	C13—C15—H15	119.0
$C_{5} - C_{6} - C_{7}$	121 12 (13)	C15 - C16 - C10	120 59 (16)
C1 - C6 - C7	120.07 (14)	C15 - C16 - H16	119.7
N1-C7-C6	112 55 (13)	C10-C16-H16	119.7
N1	100 55 (11)	01	119.7
C6-C7-C8	112 84 (13)	01 - C17 - C18	123 15 (16)
N1-C7-H7	110.2	N1-C17-C18	117 27 (15)
C6-C7-H7	110.2	$C17_{1}N1_{1}N2$	122.92 (13)
C8-C7-H7	110.2	C17 - N1 - C7	122.92(13) 124.39(13)
C9-C8-C7	102 44 (12)	N2N1C7	112 67 (12)
C9-C8-H8A	111.3	C9 N2 N1	107.82(12)
C7-C8-H8A	111.3	C_{13} C_{14} H_{14A}	109.5
C9_C8_H8B	111.3	C13 $C14$ $H14B$	109.5
C7-C8-H8B	111.3	C_{13} C_{14} H_{14}	109.5
H8A_C8_H8B	109.2	$C17$ $C18$ $H18\Delta$	109.5
N2_C9_C10	109.2	C17_C18_H18B	109.5
N2-C9-C8	113 67 (13)	C17—C18—H18C	109.5
C6-C1-C2-C3	-0.3(2)	C16-C10-C11-C12	2 5 (2)
C1 - C2 - C3 - F1	-17969(15)	C9-C10-C11-C12	-17735(15)
C1-C2-C3-C4	0.0 (3)	C10-C11-C12-C13	-0.6(3)
$C_2 - C_3 - C_4 - C_5$	0.0(3)	C11-C12-C13-C15	-19(3)
F1 - C3 - C4 - C5	179 70 (16)	C11 - C12 - C13 - C14	176 26 (16)
C_{3} C_{4} C_{5} C_{6}	03(3)	C12 - C13 - C15 - C16	2,5(3)
C4-C5-C6-C1	-0.6(2)	C14-C13-C15-C16	-17568(17)
C4-C5-C6-C7	175 26 (15)	C13-C15-C16-C10	-0.6(3)
$C_2 - C_1 - C_6 - C_5$	0.6(2)	C_{11} $-C_{10}$ $-C_{16}$ $-C_{15}$	-19(2)
C2-C1-C6-C7	-175.30 (14)	C9-C10-C16-C15	177.90 (15)

supplementary materials

C5—C6—C7—N1	35.0 (2)	O1—C17—N1—N2	177.33 (14)
C1—C6—C7—N1	-149.18 (14)	C18—C17—N1—N2	-3.9 (2)
C5—C6—C7—C8	-77.93 (18)	O1—C17—N1—C7	-0.6 (2)
C1—C6—C7—C8	97.86 (17)	C18—C17—N1—C7	178.08 (14)
N1—C7—C8—C9	-15.53 (14)	C6—C7—N1—C17	73.61 (19)
C6—C7—C8—C9	104.59 (14)	C8—C7—N1—C17	-166.07 (14)
C7—C8—C9—N2	12.45 (17)	C6—C7—N1—N2	-104.54 (14)
C7—C8—C9—C10	-168.70 (14)	C8—C7—N1—N2	15.78 (16)
N2-C9-C10-C11	164.88 (15)	C10—C9—N2—N1	178.27 (13)
C8—C9—C10—C11	-13.9 (2)	C8—C9—N2—N1	-2.83 (18)
N2-C9-C10-C16	-14.9 (2)	C17—N1—N2—C9	172.91 (14)
C8—C9—C10—C16	166.30 (15)	C7—N1—N2—C9	-8.90 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C14—H14E…F1 ⁱ	0.96	2.37	3.314 (2)	166
Symmetry codes: (i) $-x$, $-y+1$, $-z+2$.				

Fig. 1